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Fast and effective method is crucial to analyze the statistical characteristic of stochastic variation of interconnect parasitic in VLSI 

circuit. An approximate method of constructing an approximate stochastic model utilizing the first-order and second-order sensitivities 
to the process parameters is brought up, which can be used to handle the effect of geometry randomness on interconnect parasitic. This 
method is validated through an example of two conductor system. The serviceability and possible way of improvement are discussed. 
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I. INTRODUCTION 

ITH THE VLSI technology stepping into nano-scale era, 
process variations, including the material characteristics 

and the structural geometry, brought by the complicated 
manufacture procedure, such as the chemical mechanical 
polishing (CMP) and the lithography, have been major issues 
and hot spots of IC design and verification. In order to reduce 
the unforeseen impacts, the design should be insensitive to 
process variations and be checked by sensitivity verification 
[1], which requires suitable stochastic models. However, 
traditional methods, including the intrusive methods (e.g., 
stochastic spectral finite element method [2]) and non-
intrusive methods (e.g., stochastic collocation method [3]) to a 
certain extent, are time-consuming. Considering that the 
sensitivity analysis is usually used to approximate the exact 
solution, it is utilized in this paper to evaluate the probability 
estimations of object stochastic variables (e.g., interconnect 
capacitance) induced by process variations (e.g., width 
fluctuation of a conductor).  

II. METHOD OF SENSITIVITY AND APPROXIMATE STOCHASTIC 

MODEL 

A. Capacitance extraction 
Capacitance extraction in IC is a typical electrostatic 

problem, which leads to a linear algebraic system Mv=b by the 
finite element method (FEM) where the material matrix M can 
be decomposed to  
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where Me, N, and L are, respectively, the square, rectangular, 
and square matrices linking the unknown nodes, the unknown 
and boundary nodes, the boundary nodes [1]. Then the 
capacitances between conductors can be obtained easily after 
solving  
 0M Ne ev v  . (1) 

B. Sensitivity computation 
The elements of the matrices M, Me, N and L are functions 

of process parameters p. Taking the derivative of Eq.(1), with 

respect to design parameters (e.g., pr, and ps), we obtain the 
first and the second order sensitivities, which read [1] 
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C. Approximate Stochastic Model 
Knowing the potential v0 and working out the derivatives of 

potential to geometry parameters rv p  , and 2
r sv p p   , We 

can then depict the capacitance using Taylor series as Eq.(3) 
where C0 is the capacitance at the design node (mean node), 

rC p   is the sensitivity of capacitance C with respect to the 

process parameters rp  and etc. 
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III. NUMERICAL EXPERIMENTATION AND RESULTS 

Once ( )v p , ( ) rv p p   and 2 2( ) rv p p   are acquired by 

FEM and sensitivity method, the 2nd order approximated 
model of object parameters, such as capacitance and electrical 
potential distribution, is formed. Based on this model instead 
of direct random sampling method, analysis of probability 
distribution of the object parameters can be achieved much 
more easily and concisely, which means moment estimators 
and probability distribution functions (pdf) of the object 
parameters on various orders can be obtained effectively 
without prominent loss in accuracy. 

The self capacitance C11 in the multi-conductor electrostatic 
system as shown in Fig. 1 is investigated. The mesh involves 
18,544 triangular elements and 9443 nodes. In this system the 
design parameter is the width W of conductor 1, which is 
supposed to be a random variable. Using Eqs. (1)-(3), we have 
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where C11 is the self-capacitance of conductor 1, C0 is mean of 
C11 when there is no variation of width, and c1 and c2 are 

W



respectively the first order sensitivity and second order 
sensitivity.  

By Eq.(4), the probability parameters, such as mathematical 
expectations and variances, can be directly obtained as 

11E( ) 0.3836C  , 11D( ) 0.001963C   if the variation of W 

obey the uniform distribution U[-0.5, 0.5]. This method is 
simple and fast, it doesn’t need sampling but we can’t see the 
distribution of capacitance. 

 
Fig 1. 4-conductors system, where 1 volt voltage is applied on conductor 1 
and 0 volt voltage on others. C11 denotes the self-capacitance of conductor 1. 
 

Direct Monte Carlo method (DMC) is another way to get 
the corresponding results and statistical characteristics. The 
DMC inquires capacitances by FEM Solver over numerous 
samples of the variations of width which is very time 
consuming. Here we use the DMC to validate our 2nd order 
sensitivity approach. With the DMC, we can obtain the mean 
and variation of the solutions corresponding with 100,000 
samples, i.e.,  11E C 0.3786  and 11D(C ) 0.0002102 . The 

distributions of the width and the self-capacitance by the 
sensitivity model and by DMC are shown in Fig.2. The 
relative error between the sensitivity method and the DMC is 
0.50%.  

We can also adopt the second-order polynomial fitting 
method to obtain the second order model from the samples, 
which reads as  
 2

11 0.3786 0.1581 W 0.05988 WC      , (5) 

and  11E C 0.3786 , 11D(C ) 0.0002101 . The Eq.(5) and 

results are very close to those of the sensitivity model denoted 
by Eq. (4). 
 

 
Fig. 2. Distributions of (left) the variation of width ( W ), (middle) the self-
capacitance C11 based on second-order sensitivity method, and (right) C11 
based on direct Monte Carlo method. W  meets the uniform distribution, 

 ~ 0.5,0.5W U  .  

Considering the case that W  meets normal distribution 
N(0, (1/3)2), the expectations and variances of the sensitivity 
method and the DMC are, respectively,  11(C ) 0.3836E  , and 

11(C ) 0.3794E  , 11(C ) 0.001963D  , 11(C ) 0.0002970D  . 

The distributions of the self-capacitance are compared in Fig. 

3. The relative error between the sensitivity method and the 
DMC is 1.11%.  

The results of the self-capacitance can be expressed as 
Eq.(6) via linear fit, 
 2

11 0.3786 0.1547 W 0.05780 WC      , (6) 

which is also very close to the sensitivity model. 
 

.  
Fig. 3. Distributions of (left) the variation of width ( W ), (middle) the self-
capacitance C11 based on second-order sensitivity method, and (right) C11 
based on direct Monte Carlo method. W  meets the normal distribution 

  2
~ 0, 1/ 3NW .  

IV. DISCUSSION AND CONCLUSIONS 

Computational analysis shows that if the variation is 
significant (more than 5%), the proposed method can be only 
used qualitatively as an approximate description, but we can 
construct several approximate stochastic models on different 
design nodes, and use them to compute the distribution 
piecewisely. 

On the other side, we can compute the sensitivities using 
stochastic method such as Sobol methods and polynomial 
chaos [4][5]. In the full paper, the implementation and 
performance of such methods and the stochastic FEM are to 
be discussed. 

Moreover, the relationship between different dimensions is 
usually ignored for calculation convenience, but it is not the 
fact. The correlation should be considered in both equation 
derivation processing and random sampling for multivariable 
system. 
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